翻訳と辞書
Words near each other
・ Sendlinger Tor
・ Sendlinger Tor (Munich U-Bahn)
・ Sendmail
・ Sendmail, Inc.
・ SendMe Mobile
・ SendMeRSS
・ Sendo
・ Sendo M550
・ Sendo X
・ Sendo X2
・ Sendo Z100
・ Sendo.vn
・ Sendoa Agirre
・ Sendokai Champions
・ Sendou power station
Sendov's conjecture
・ SendQ
・ Sendraž
・ Sendražice
・ Sendrisoa
・ SendStation Systems
・ SendThisFile
・ Senduary
・ Sendul
・ Sendurai Block
・ Sendurai taluk
・ Sendust
・ Sendy Rleal
・ Sendzimir process
・ Sendégué


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Sendov's conjecture : ウィキペディア英語版
Sendov's conjecture
In mathematics, Sendov's conjecture, sometimes also called Ilieff's conjecture, concerns the relationship between the locations of roots and critical points of a polynomial function of a complex variable. It is named after Blagovest Sendov.
The conjecture states that for a polynomial
: f(z) = (z - r_1)\cdots (z-r_n),\qquad (n\ge 2)
with all roots ''r''1, ..., ''r''''n'' inside the closed unit disk |''z''| ≤ 1, each of the ''n'' roots is at a distance no more than 1 from at least one critical point.
The Gauss–Lucas theorem says that all of the critical points lie within the convex hull of the roots. It follows that the critical points must be within the unit disk, since the roots are.
The conjecture has not been proved for ''n'' > 8.
==History==

This conjecture was first mooted by Blagovest Sendov in 1959. He proposed this conjecture to Nikola Obreschkov. In 1967 this conjecture was misattributed to Ljubomir Iliev by Walter Hayman. In 1969 Mier and Sharmaad proved the conjecture for polynomials with ''n'' < 6. In 1991 Brown proved the conjecture for ''n'' < 7. Borcea extended the proof to n < 8 in 1996. Brown and Xiang proved the conjecture for ''n'' < 9 in 1999. Degot has proven the conjecture for large ''n'' but this proof requires additional conditions.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Sendov's conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.